

NASA Technical Memorandum 4385

The Syntax of DRAGOON:

Evaluation and Recommendations

C. Michael Holloway

Langley Research Center

Hampton, Virginia

NASA
National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Program

1992

Abstract

Several different ways to add linguistic support for object-oriented

programming to the Ada programming language have been proposed and

developed in recent years. DRAGOON is one such Ada extension. This

paper describes the DRAGOON syntax for classes, objects, and inher-

itance, and it evaluates the syntax against the following five criteria:

readability, writeability, lack of ambigiiity, ease of translation, and con-

sistency with existing Ada syntax. The evaluation reveals several de-

ficiencies in the notation. The paper Concludes with a proposal for a

revised syntax that corrects these deficiencies.

1. Introduction

The Ada programming language was designed in the late 1970's and early 1980's (Nyberg

1989) before object-oriented programming became popular; as a result, Ada provides little

support for these techniques CAnon. 1989a). In rcccnt years, several groups have attempted

to improve Ada support for object-oriented programming by developing extensions to the

language.

Software Productivity Solutions, Inc., is currently marketing an Ada extension called

Classic-Ada (Donaldson 1989; Anon. 1989b), which is based on the language Smalltalk

(Goldberg and Robson 1983). Harris Corporation has developed a language for their internal

use called InnovAda (Simonian and Crone 1988) that is based on Flavors (Moon 1986) (an

object-oriented extension to Lisp that has been made obsolctc by the Common Lisp Object

System (Bobrow ct al. 1988)). Several other approaches have been described also (Forestier,

Fornarino, and Franchi-Zannettacci 1989; Winkler 1990).

The most widely praised Ada extension (Johnson 1990) is the programming language

Distributable Reusable Ada Generated from an Object-Oriented Notation (DRAGOON)

(Di Maio et al. 1989; Genolini, Di Maio, and De Michele 1990; Atkinson et al. 1991), which is

being developed by TXT Ingegneria Informatica in Italy as part of the Esprit project Ca joint

effort of several European governments, companies, and universities to significantly improve

software quality). DRAGOON is bascd on Eiffel (Meyer 1988) and provides full syntactic and

semantic support for object-oriented programming.

This paper describes and evaluates the syntax of the DRAGOON extensions to Ada and

proposes improvements to it. The rest of the paper is organized as follows: Section 2 gives

necessary background information; section 3 describes the current syntax for DRAGOON and

gives examples of its use; section 4 explains the criteria used to evaluate the syntax; section 5

evaluates the syntax and lists the deficiencies found in it; section 6 provides recommendations

on how to improve the syntax; and section 7 gives concluding rcmarks.

2. Background Information

This section provides background information needed for understanding the remainder of

the paper. Object-oriented programming terms and concepts are defined, and the notation

used for describing the DRAGOON syntax is explained. Since the reader is assumed to be

familar with Ada, an overview of Ada is not given.

2.1. Object-Oriented Programming Terms and Concepts

Reading the literature reveals that no universally adopted terminology exists for describing

object-oriented programming concepts (Wirfs-Brock and Johnson 1990). The three most widely

knownobject-orientedprogramminglanguagesSmalltalk,C++ (Stroustrup 1986; Ellis and

Stroustrup 1990), and Eiffel often use different terms to refer to the same concepts or the

same term to refer to different concepts. The terms and definitions below are based on Booch

(1991) and Wegner (1990) and will be used in the rest of this paper.

An object is a software entity that consists of a set of state data and a set of operations on

that data. Another common name for an object is an instance. The state data of an object are

composed of its instance variables; the operations permitted on an object are its methods.

A class is a template for building similar objects. A class specifies the instance variables and

methods that all objects belonging to the class will have. Together, these instance variables

and methods are called the features of tile class.

A class or subprogram that contains or uses an instance of another class is called a client of

that class. Methods that may be used by a client are said to be visible. Methods that may be

used only within the class in which they are defined are called internal methods. The visible

methods compose the class interface or specification. Instance variables, internal methods, and

the code for visible methods compose the class implementation or body.

Classes can share interfaces and implementations through inheritance, thus forming a class

hierarchy. Within a hierarchy, a descendant class can inherit instance variables and methods

from one or more ancestor classes. A hierarchy in which a descendant class can have more than

one ancestor class uses multiple inheritance; a hierarchy in which a descendant class can have

only one ancestor class uses single inheritance.

A class may specify the interface for some methods without providing an implementation

for them. Such methods are called deferred methods, and the class containing them is called an

abstract class. An abstract class cannot have any instances. Descendant classes can implement

the given interface for the deferred methods of an abstract ancestor. A class that provides an

implementation for every method in its interface is called a concrete class.

2.2. Syntax Notation

The published papers on DRAGOON do not give a formal definition of the syntax of the

language; instead, they illustrate it with specific examples. The definitions used in the paper

were developed by the author after a careful study of the published examples. The notation

is the same as that used in describing the context-free syntax of Ada (Nyberg 1989). This

notation is a variation of the well-known Backus-Naur Form (Pratt 1984), with the following

rules:

• Lowercase words, which may include embedded underscores, denote syntactic cate-

gories; for example, class _declaration.

• Boldface words and symbols denote literal words and symbols. For example,

class ;

denotes the reserved word class followed by a literal semicolon.

• The symbol ::= denotes a definition of a syntactic category. For example,

class_declaration ::= class_specification ;

defines the syntactic category class _declaration to consist

class _specification followed by a semicolon.

of a

• A verticalbar (I) separatesalternativeitems.Forexample,

method_modifier ::= completed I redefined

meansthat amethod_modifier maybeeitherthereservedwordcompletedor the
reservedwordredefined.

• Squarebrackets([and]) surroundanoptionalitem. For example,

method_ specification ::= subprogram _specification [defer _part]

means that a method_ specification may, or may not, contain a defer _part.

• Braces ({ and }) surround an item that may appear zero or more times. For example,

identifier_list ::= identifier {, identifier}

definesan identifier _list to be an identifier followed by zero or more comma-

separated identifiers.

A syntactic category that begins with an italicized part is equivalent to the syntactic

category without the italicized part. The italicized part is used to convey semantic

information. For example, syntactically class_identifier_list is equivalent to

identifier _list; the class prefix means that the language semantics requires that
the identifiers denote names of classes.

• Only new and modified syntactic categories are defined; any category for which a

definition is not specifically given h_ t_e same definition as it does in Ada.

The notation used in specific examples is the same as that used in the examples in the

Ada definition. Specifically, reserved words are written in lowercase letters, and identifiers are

written in uppercase letters with embedded underscores. However, this is only a convention;

DRAGOON, like Ada, is insensitive to case. The examples given are meant to illustrate the

syntax of DRAGOON only; they do not necessarily represent good programming style.

3. DRAGOON Syntax

This section describes the DRAGOON syntax for classes, objects, and inheritance. Minor

aspects of the syntax, which would have no impact on the evaluation, are ignored.

The discussion, which concentrates on syntactic issues alone, neither provides an overview

of the entire DRAGOON language nor discusses semantic issues. Also, DRAGOON allows

classes to be parameterized, concurrent, and distributed, but these aspects of the language are

not discussed. The syntax for parameterized classes is not described in any available published

literature. Concurrent and distributed classes are not discussed because doing so would greatly

complicate the discussion without significantly affecting the conclusions.

3.1. Classes

The syntactic structure of a class definition _nDRAGOON is analogous to the syntactic

structure of a package definition in Ada. SpecifiCally, DRAGOON requires physical separation

of a class interface and its implementation. The language also adopts the Ada nomenclature;

the interface of a class is called its specification, and the implementation of a class is called its

body.

3

3.1.1. Class specification. A DRAGOON class specification resembles an Ada package

specification with the following three differences:

1. The DRAGOON reserved word class replaces the reserved word package.

2. The DRAGOON reserved word introduces is added.

3. Only method definitions and inheritance (see section 3.3) are allowed in a class

specification.

Like a package specification, a class specification is a library unit. It may include with

clauses to obtain visibility of classes or packages defined separately, and it may be compiled

separately from the corresponding class body. Within a class specification, the syntactic form

of a method declaration is identical to the syntactic form of an Ada subprogram declaration

within a package specification.

The syntax for a class specification is given below:

library _unit ::=

subprogram_declaration 1

I generic_declaration I

I subprogram_body I

package_declaration

generic_instantiation

class _declaration

class_declaration ::= class_specification ;

class_specification ::=

class identifier is

[introduces_specification]

end [class_simple_name]

introduces_specification ::=

introduces

method_declaration

{ method_declaration}

method_declaration ::= method _specification ;

method_specification ::= subprogram_specification

Example 1 shows a simple class specification (Atkinson et al. 1991). This class defines an

interface for a simple one-item buffer class called UNI_ BUFFER; the interface consists of the two

methods PUT and GET. The buffer accepts and makes available entities of type ITEM defined in

the package SIMPLE.

with SIMPLE;

class UNI_BUFFER is

introduces

procedure PUT (I : in SIMPLE.ITEM);

procedure GET (I : out SIMPLE.ITEM);

end UNI_BUFFER;

-- method definition

-- method definition

Example 1. A class specification.

4

3.1.2. Class body. A DRAGOON class body corresponds to an Ada package body even

more closely than a class specification corresponds to a package specification. The only syntactic

difference is the use of the reserved word class in place of package. No special restrictions

limit what may appear within a class body. Each method defined in the class specification

must have an implementation in the body, and any instance variables for the class must be

defined in the body.

The following defines the syntax for a class body:

library_unit _body ::= subprogram_body [package _body I class _body

class_body ::=

class body class_simple_name is

[declarative_part]

end [class_simple_name] ;

Example 2 shows a possible body for the UNI _BUFFER class (Atkinson et al. 1991). Except

for the beginning reserved word, it appears identical to an Ada package body of the same name.

Also, the instance variable declaration and the method bodies are identical syntactically to Ada

variable declarations and subprogram bodies, respectively.

class body UNI _BUFFER is

BUFFER : SIMPLE.ITEM; -- instance variable

procedure PUT (I : in SIMPLE.ITEM) is

begin

BUFFER := I; -- method body

end PUT;

procedure GET (I : out SIMPLE.ITEM) is

begin

I := BUFFER; -- method body

end GET;

end UNI _BUFFER;

Example 2. A class body.

3.2. Objects

A DRAGOON object syntactically resembles an Ada variable. Specifically, the DRAGOON

syntax for declaring an object of some class is identical to the Ada syntax for declaring a

variable of some type. However, unlike an ordinary Ada variable, a DRAGOON object does

not actually exist (that is, storage space is not allocated for it and its methods cannot be called)

until explicitly created by either calling the special CREATE method (Atkinson et al. 1991) or

by assigning to it an object for which the CREATE method has been called. The CREATE method

is similar in effect to the new allocator for access types in Ada. The requirement for its use is

a semantic issue, and thus it is not expressed in the syntax.

5

The DRAGOONnotationfor invokinga methodresemblesthe Ada syntaxfor calling
a subprogram,and it is consistentwith the notationof mostobject-orientedprogramming
languages.Outsideof a class body, a method is invoked by giving its name and parameters

prefixed by the name of an object belonging to a class in which the method is defined. Within

a class body, an object name prefix is not usually required, and thus a method may be invoked

by giving its name and parameters only.

The syntax for object declaration and method invocation is given below:

basic _declaration : := as defined in Ada

class _object _declaration ::_

identifier_list : class_name ; =

method _invocation ::=

object_name.method_name [actual _parameter'_part] ;

internal _method _invocation ::=

method_name [actual _parameter _part] ;

I class_object _declaration

Example 3 illustrates defining and creating an object, and also calling its methods. It also

illustrates bypassing, through assignment, the need for an explicit CREATE.

with UNI_BUFFER, SIMPLE;

procedure USE_BUFFER is

X : SIMPLE.ITEM;

BUFF1 : UNI _BUFFER; -- define a UNI _BUFFER object

BUFF2 : UNI _BUFFER; -- define another UNI _BUFFER object

begin

BUFFI.CREATE; -- create the object

X := -- some appropriate value of type SIMPLE.ITEM

BUFFI.PUT (X); -- invoke the PUT method

BUFF2 := BUFF1; -- BUFF2 and BUFFI now are the same object

BUFF2.GET (X); -- invoke the GET method

end USE_BUFFER:

ExampIe 3. Object definition, creation, and use.

3.3. Inheritance

DRAGOON supports multiple inheritance for classes. The language allows a descendant

class to modify methods from an ancestor and to add its own methods and variables.

DRAGOON also allows an ancestor class to defer to its descendants the implementation of
a method.

Syntactically, a descendant class lists its ancestors in its specification following the rcserved
word inherits. Inherited methods that are to be modified are listed after the reserved word

redefines, and inherited methods that are to be completed (that is, given an implementation)

are listed following the reserved word completes. A method may be completed only if it was

specified as deferred (signified by the reserved words is deferred) by an ancestor.

Thefollowingdefinesthesyntaxfor inheritance:

class _specification ::ffi

class identifier is

[inherits _list]

[redefines_list]

[completes _list]

[introduces _specification]

end [class_simple _name]

inherits _list ::ffi

inherits

class_identifier _list ;

redefines _list ::=

redefines

method _identifier _list ;

completes _list ::=

completes

method_ identifier _list ;

method_specification ::= subprogram_specification [defer_part]

defer _part ::= is deferred

Example 4 illustrates the syntactic aspects of inheritance; it includes redefined, deferred,

and completed methods (Di Maio et el. 1989). To avoid unnecessary complexity in the example,

the class bodies are not shown.

The body of class PRINTER _DEVICE may define some instance variables and internal

subprograms, but it cannot give bodies for either the RESET or PRINT methods, because these

methods are deferred. The body of class DAISY _PRINTER must provide implementations for

both methods because they are listed in its completes section.

Objects of class LASER_PRINTER have access to the methods RESET, PRINT, and

GRAPHIC _PRINT via inheritance. The body of class LASER _PRINTER must contain implemen-

tations for the new method LOAD _FONT and for the redefined methods RESET (inherited from

DAISY _PRINTER) and GRAPHIC _PRINT (inheritedfrom GRAPHIC _DEVICE). It cannot have an

implementation for the method PRINT because that method is inheritedwithout redefinition

from DAISY _PRINTER.

4. Criteria for Evaluation

The syntax of a programming language serves two primary purposes: it provides the notation

for communication between programmers, and it provides the notation by which a programmer

communicates information to a language processor. Because people are not machines, these

two purposes often conflict. Since a language designer cannot create a syntax that fulfills both

purposes simultaneously and fully, he must compromise. Pratt has listed four general criteria

that a designer may use to guide and evaluate those compromises (Pratt 1984):

7

class PRINTER_DEVICE is

introduces

procedure RESET is deferred;

procedure PRINT (F : in FILE)

end PRINTER_DEVICE;

is deferred;

class DAISY_PRINTER is

inherits

PRINTER_DEVICE;

completes

RESET, PRINT;

end DAISY_PRINTER;

class GRAPHIC _DEVICE is

introduces

procedure GRAPHIC_PRINT (F :

end GRAPHIC DEVICE;

in FILE);

class LASER_PRINTER is

inherits

DAISY_PRINTER, GRAPHIC_DEVICE;

redefines

RESET, GRAPHIC_PRINT;

introduces

procedure LOAD_FONT;

end LASER_PRINTER;

Example 4. Multiple inheritance with redefined and deferred methods.

1. Readability a programmer can deduce the underlying structure of the algorithms and

data structures of a program by reading its source.

2. Writeability a programmer can express algorithms and data structures naturally and

concisely.

3. Lack of ambiguity each syntactic construct has one and only one meaning.

4. Ease of translation a program can be translated into an executable form cheaply and

quickly.

Tile syntax of a particular programming language depends on the relative importance that

its designers assign to satisfying each of these criteria. For example, the designers of the Ada

programming language considered readability to be paramount (Nyberg 1989). In contrast, the

designers of the C programming language considered writeability and case of translation to be

most important (Kernighan and Ritchie 1978). As a result, the syntax of Ada differs greatly

from the syntax of C.

In developing or evaluating the notation-of an extension to an existing language, one more

criterion is important:

5. Consistency with existing syntax the syntax obeys the conventions established in

the base langnlage.

8

If thenotationofanextensionissignificantlydifferentfromthebasenotation--orworse,if
its conventionsandstyleconflictwith thoseof thebasenotation--programmerswill find the
extensionnotationdifficult to learnanduse.This is true evenif the extendedsyntaxis, by
itself,readable,writeable,freeofambiguity,andeasyto translate.

5. Evaluation of DRAGOON Syntax

Evaluated against the above-mentioned criteria,

shortcomings:

the syntax of DRAGOON has two

1. Lists of method names, such as those required in a redefines or completes

section, hinder readability, writeability, and ease of translation.

2. The overall style of the syntax seems to conflict with the style of the underlying Ada

syntax.

The rest of this section explains in detail these two deficiencies of the syntax and iIlustrates

both with examples.

5.1. Lists of Method Names

Section 3.3 discussed the syntax for redefined or completed methods; a list of method names

follows the appropriate reserved word. The primary difficulty with this syntax is that it obscures

the association between a method and the class ifi which it was defined. As a result, programs

are less easy to read, translate, and write than th@ need to be.

To illustrate the problem, consider the redefines section of class LASER _PRINTER of

example 4. Method RESET is inherited from class DAISY _ PRINTER and method GRAPHIC _ PRINT

is inherited from class GRAPHIC _DEVICE, but.thi_ is not evident from the text of the class

specification alone. To obtain this information, a:programmer (or a language translator) must

examine the class specifications for each ancestor class and look for the definition of a method
....... 7

with the appropriate name.

Lists of method names also prohibit a programmer from using the same name for a method

within two or more classes that might have a common descendant. This hinders writeability

since a programmer might have to invent different names simply to prevent possible, future

name clashes. Name lists do not provide a way to resolve name clashes within the descendant,

which is where the problem actually is.

Example 5 illustrates the difficulty. Class C inherits two methods named P, one from class t.

and one from class B. Within class C and any of its clients, a reference to P is ambiguous.

5.2. Differences in Style

The second deficiency in the described DRAGOON syntax is that its style does not conform

fully to the style of the language on which it was based. At least three inconsistencies between

the syntactic style of DRAGOON and Ada can be identified.

One conflict in style between the two languages is that DRAGOON does not follow the Ada

convention of using different syntactic constructs to distinguish different entities. Specifically,

a method specification is syntactically identical to a subprogram specification, but a method

is not semantically identical to a subprogram. The DRAGOON syntax is not ambiguous (that

is, a programmer or a translator can always determine from the context whether a particular

specification defines a method or a subprogram), but it can be confusing. In contrast, Ada uses

9

differentreservedwordsto specifya functionandaprocedure,althoughdoingsoisnotstrictly
necessaryeither.

class A is

introduces

procedure P;

procedure M (X :

end A;

A);

class B is

introduces

procedure P;

procedure N (Y : B);

end B;

class C is

inherits A, B;

-- is the method P that is visible to the clients of C inherited from

-- class A or from class B?

end C;

Example 5. Conflicts in method names.

A second conflict in style is the DRAGOON sectioning of declarations. Ada does not

have separate sections for the various types Of declarations; variable, exception, subprogram,

package, and task declarations generally may be interspersed in whatever manner seems best

to a programmer. The only separate section in an Ada package is the private part, and it is

there to help language translators only. DRAGOON violates this convention by having separate

sections for inheritance, method definitions, method completion, and method redefinition.

The third conflict is the DRAGOON imposition of an order on sections. Ada places few

restrictions on the order of declarations; the only requirement is that a name be defined before

it is used. The sections of a DRAGOON class specification must follow a partial order: the

inherits section must precede either a redefines or a completes section, and the introduces
section must follow all these.

Taken together, these last two aspects of DRAGOON make a class specification resemble

syntactically a Pascal program more than an Ada package specification. As an illustration,

example 6 shows the basic structure of a DRAGOON class specification, a Pascal program,

and an Ada package specification. The Ada package specification imposes very little structure

on its contents; however, the DRAGOON class specification, like a Pascal program, imposes a

fairly rigid structure on its contents.

6. Possible Improvements

Neither of the deficiencies in the DRAGOON syntax noted in the previous section are severe,

and both can be eliminated by making three modifications to the syntax. The following two

modifications are simple:

I0

1. Introduce the new reserved word method to be used instead of procedure in method

definitions. This change eliminates the first style conflict identified in section 5.2.

2. Eliminate the introduces section. This change partially addresses the second and

third style conflicts discussed in section 5.2.

DRAGOON Pascal Ada

class C is program P package P is

inherits label <most anything>

<only class names> <only labels here> < can go here >

redefines const

<only method names> <only_onstants> private

completes type <most anything>

<only method names> <only type defs> < can go here >

introduces var

<only method specs> <only var decls> end P;

end C; begin

end.

Example 6. Structure of DRAGOON, Pascal, and Ada.

The result of making these two modifications is described by the following syntax:

class_declaration ::= class_specification

class_specification ::=

class identifier is

{ method _or_inherit _declaration }

end [class_simple_name]

method _or _inherit _declaration ::= method _declaration

[inherit_declaration

method_declaration ::= method_specification [defer_part] ;

method_specification ::=

method identifier [formal_part]

defer_part ::= is deferred

class_body ::=

class body class_simple_name is

[class _body_ declarative ?part]

end [class_simple_name] ;

class_body_declarative _part ::=

{ basic_declarative _item } { class_body_later_declarative _item }

class_body_later_declarative_item ::=

later_declarative_item I method_body

Ii

method_body ::=

method_specification is

[declarative_part]

begin

sequence_of_statements

end [method_simple_name] ;

Example 7 shows how the class specification of example 1 and the class body of example 2

would be rewritten using the modified syntax.

with SIMPLE;

class UNI_BUFFER is

method PUT (I : in SIMPLE.ITEM);

method GET (I : out SIMPLE.ITEM);

end UNI _BUFFER;

class body UNI _BUFFER is

BUFFER : SIMPLE.ITEM; -- instance variable

method PUT (I :

begin

BUFFER := I;

end PUT;

in SIMPLE.ITEM) is

method GET (I :

begin

I := BUFFER;

end GET;

out SIMPLE.ITEM) is

end UNI _BUFFER;

Example 7. Revised class specification and body.

These two modifications neither address the problem caused by lists of method names

(section 5.1) nor fully resolve the conflicts in syntactic style between DRAGOON and Ada.

To solve the remaining shortcomings of the DRAGOON syntax, a third modification is needed.

Specifically, the inherits, redefines, and completes sections must be eliminated and replaced

by inheritance clauses, which may appear interspersed with method definitions in a class

specification.

A separate inheritance clause is used for each ancestor class. The clause begins with thc

reserved word inherit followed by the name of the ancestor class. After the ancestor name, the

methods from the ancestor class that are to be redefined or completed are fully specified. Thus,

the relationship between a method and its defining class is explicit; neither a programmer nor

a translator have to perform a search to discover the relationship. The clause is terminated by

the reserved words end inherit. If ancestor methods are inherited without modification, the

terminating phrase is not needed.

The following syntax describes the inheritance clause. In this syntax, an inheritance

clause containing no completed method redefinitions is called a simple inheritance clause;

12

an inheritance clause containing method redefinitions or completions is called a compound

inheritance clause. Thus,

inherit_declaration ::-- inherit,clause ;

inherit _clause ::= simple _inherit _ clause I compound _ inherit _ clause

simple _ inherit _ clause ::= inherit class _ simple _ name

compound _ inherit _clause ::=

inherit class_ simple _name is

{ method_modification _declaration }

end inherit [class_simple_name]

method _ modification _ declaration : :---

method_specification is method_modifier ;

method_modifier ::= completed I redefined

Example 8 shows the classes of example 4 rewritten to conform to the proposed new syntax.

With the new syntax, a programmer can see immediately, without visually searching back

through the program text, in which class each completed and redefined method was originally

defined.

class PRINTER_DEVICE is

method RESET is deferred;

method PRINT (F : in FILE)

end PRINTER_DEVICE;

is deferred;

class DAISY_PRINTER is

inherit PRINTER _DEVICE is

method RESET is completed;

method PRINT (F : in FILE) is completed;

end inherit PRINTER _DEVICE;

end DAISY_PRINTER;

class GRAPHIC_DEVICE is

method GRAPHIC _PRINT (F : in FILE);

end GRAPHIC_DEVICE;

class LASER_PRINTER is

inherit DAISY_PRINTER is

method RESET is redefined;

end inherit DAISY _PRINTER;

method LOAD_FONT; -- note that the order does not matter

inherit GRAPHIC _DEVICE is

method GRAPHIC_PRINT (F : in FILE) is redefined;

end inherit GRAPHIC_DEVICE;

end LASER_PRINTER;

Example 8. Printer example rewritten.

13

Another advantage of the inheritance clause is that it provides a context for renaming

methods whose original name conflicts with that of another method. A construct for such

renaming is not included in the syntax given above, but one can be added easily. Example 9,

which is a modification of example 5, illustrates one possible solution.

class A is

method P;

method M (X : A);

end A;

class B is

method P;

method N (Y : B);

end B;

class C is

inherit A is

method CP renames P;

end inherit A;

inherit B; -- no need to rename P, since conflict already resolved

end C;

Example 9. Method name conflicts resolved.

7. Concluding Remarks

This paper has described and evaluated the DRAGOON syntax for classes, objects, and

inheritance. The evaluation revealed two deficiencies in the syntax. First, lists of method

names, such as those required in a redefines or completes section, hinder the readability,

writeability, and ease of translation. Second, the overall style of the syntax seems to conflict

with the style of the underlying Ada syntax. Neither of these deficiencies is severe, and both

can be eliminated without difficulty.

This paper proposes the following three modifications to the syntax, which the author

believes can correct the current deficiencies:

1. In method definitions, introduce the new reserved word method to be used

instead of procedure.

2. Eliminate the introduces section.

3. Replace the inherits, redefines, and completes sections by an inheritance clause,

which makes explicit the relationship between inherited methods and their

defining classcs.

Implementing these changes should make DRAGOON programs easier to understand and write

than they are currently, and this simplification should result in a greater consistency between

the syntactic styles of DRAGOON and Ada.

NASA Langley Research Center
Hampton, VA 23665-5225
June 5, 1992

14

8. References

Anon. 1989a: Ada 9X Project Report Ada 9X Project Requirements Workshop. Office of the Under Secretary

of Defense for Acquisition.

Anon. 1989b: Classic-Ada User's Manual. Software Productivity Solutions.

Atkinson, Colin; Goldsack, Stephen; Di Maio, Andrea; and Bayan, Rami 1991: Object-Oriented Concurrency

and Distribution in DRAGOON. J. Object-Oriented-Program., vol. 4, no. 1, pp. 11-20.

Bobrow, Daniel G.; DeMichiel, Linda G.; Gabriel, Richard P.; Keene, Sonya E.; Kiczales, Gregor; and Moon,

David A. 1988: Common Lisp Object System Specification. SIGPLAN Not., vol. 23, Special Issue,

pp. 1-1 1-48.

Booch, Grady 1991: Object Oriented Design With Applications. Benjamin/Cummings Publ. Co., Inc.

Di Maio, Andrea; Cardigno, Cinzia; Bayan, Rami; Destombes, Catherine; and Atkinson, Colin 1989:

DRAGOON: An Ada-Based Object Oriented Language for Concurrent, Real-Time, Distributed Systems.

Ada: The Design Choice--Proceedings of the Ada-Europe Conference, Cambridge Univ. Press, pp. 39 48.

Donaldson, C. M. 1989: Dynamic Binding and Inheritance in an Object-Oriented Ada Design. Ada: The

Design Choice--Proceedings of the Aria-Europe Conference, Cambridge Univ. Press, pp. 16 25.

Ellis, Margaret A.; and Stroustrup, Bjarne 1990: The Annotated C+-/- Reference Manual. Addison-Vv'esley
Publ. Co.

Forestier, J. P.; Fornarino, C.; and Franchi-Zannettacci, P. 1989: Ada++ A Class and Inheritance Extension

for Ada. Ada: The Design Choice--Proceedings of the Ada-Europe Conference, Cambridge Univ. Press,

pp. 3-15.

Genolini, S.; Di Maio, A.; and De Michele, M. 1990: DRAGOON and Ada: The Wedding of the Nineties.

Proceedings of the Seventh Washington Ada Symposium, Joseph P. Johnson, ed., Assoc. for Computing

Machinery, Inc., pp. 245 254.

Goldberg, Adele; and Robson, David 1983: SmaUtalk-80, The Language and Its Implementation. Addison-

Wesley Publ. Co.

Johnson, Joseph P., ed. 1990: Proceedings of the Seventh Washington Ada Symposium. Assoc. for Computing

Machinery, Inc.

Kernighan, Brian W.; and Ritchie, Dennis M. 1978: The C Programming Language. Prentice-Hall, Inc.

Meyer, Bertrand 1988: Object-Oriented Software Construction. Prentice Hall, Inc.

Moon, David A. 1986: Object-Oriented Programming With Flavors. SIGPLAN Not., vol. 21, no. 11, pp. 1 8.

Nyberg, Karl A., ed. 1989: The Annotated Ada Reference Manual. ANSI/MIL-STD-1815A-1983 (Annotated).

Pratt, Terrence W. 1984: Programming Languages _Design and Implementation, Second ed. Prentice-Hall,
Inc.

Simonian, Richard; and Crone, Michael 1988: InnovAda: True Object-Oriented Programming in Ada.

J. Object-Oriented Program., vol. 1, no. 4, pp. 14-21.

Stroustrup, Bjarne 1986: The C+ + Programming Language. Addison-Wesley Publ. Co.

Wegner, Peter 1990: Concepts and Paradigms of Object-Oriented Programming Expansion of Oct. 4

OOPSLA-89 Keynote Talk. ACM OOPS Messenger, vol. 1, no. 1, pp. 7 87.

Winkler, Jiirgen F. H. 1990: Adding Inheritance to Ada. Proceedings of the Seventh Washington Ada

Symposium, Joseph P. Johnson, ed., Assoc. for Computing Machinery, Inc., p. 241 244.

Wirfs-Brock, Rebecca J.; and Johnson, Ralph E. 1990: Surveying Current Research in Object-Oriented Design.

Commun. ACM, vol. 33, no. 9, pp. 104 124.

15

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0Y04-0188

Public reporting burden for this collection of information is estimated to average I hour per response, including the time lot reviewing instructions, searching existing data sources.
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reduclng this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports. 12[5 Jefferson
Davis Highway, Suite 1204. Arlington, VA 22202-4302. and to the Office of Management and Budget, Paper_k Reduction Project (0704-0188). Washington. DC 20503

1, AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

,July 1992 Technical Memorandum

4. TITLE AND SUBTITLE

The Syntax of DRAGOON: Evaluation and Recommendations

6. AUTHOR(S)

C. Michael Holloway

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center

Hampton, VA 23665-5225

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

_Vashington, DC 20546-0001

5. FUNDING NUMBERS

WU 505-64-10-02

8. PERFORMING ORGANIZATION

REPORT NUMBER

L-17028

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-4385

11, SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified Unlimited

Subject Category 61

12b. DISTRIBUTION CODE

13, ABSTRACT (Maximum 200 words)

Several different ways to add linguistic support for object-oriented programming to the Ada programming

language have been proposed and developed in recent years. DRAGOON is one such Ada extension. This

paper describes the DRAGOON syntax for classes, objects, and inheritance, and it evaluates the syntax against

the following five criteria: readability, writeability, lack of ambiguity, ease of translation, and consistency with
existing Ada syntax. The evaluation reveals several deficiencies in the notation. The paper concludes with a

proposal for a revised syntax that corrects these deficiencies.

14. SUBJECT TERMS

Ada; Programming languages; DRAGOON; Syntax

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

tSN 7540-01-280 5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

15. NUMBER OF PAGES

16

16. PRICE CODE

A03

20. LIMITATION

OF ABSTRACT

;tandard Form298(Rev. 2-89)
Pre_ribed by ANSI Std Z39-18
298-102

NASA-Lan_ey. 1992

